Changes

Talk:Counterexamples to Relativity

1,758 bytes added, 16:44, August 3, 2010
/* GPS revisited */ apples and oranges
::The Time Service Department – a department of the U. S. Navy - states: “The Operational Control System (OCS) of the Global Positioning System (GPS) does not include the rigorous transformations between coordinate systems that Einstein’s general theory of relativity would seem to require – transformations to and from the individual space vehicles (SVs), the Monitor Stations (MSs), and the users on the surface of the rotating earth, and the geocentric Earth Centered Inertial System (ECI) in which the SV orbits are calculated. There is a very good reason for the omission: the effects of relativity, where they are different from the effects predicted by classical mechanics and electromagnetic theory, are too small to matter – less than one centimeter, for users on or near the earth.”
::Sorry, Frank.{{usigned|PhyllisS}} :::As far as I can see there is no reason to feel sorry for FrankC: Your article only covers the idea of using the [[Lorentz transformation instead]] of the [[Galileo transformation]] when calculating the position of an object: one could say that it is about the relativistic effects caused by the movement of the GPS receiver, not of the GPS satellites. That's why it's talking about ''fast moving air-planes and satellites''.:::FrankC (and others) have shown that there are relativistic effects on the satellites which are taken account of:::::[http://www.navcen.uscg.gov/pubs/gps/sigspec/gpssps1.pdf Global Positioning System Standard Positioning Service Signal Specification], 2nd edition, June 1995: ::::p. 13: ''To compensate for relativistic effects, the output frequency of the satellite's frequency standard -- as it would appear to an observer located at the satellite -- is 10.23 MHz offset by a Df/f = -4.4647 x 10-18 or a Df = -4.567 x 10-3 Hz.'' ::::p. 39: ''The coefficients transmitted in subframe 1 describe the offset apparent to the control segment two-frequency receivers for the interval of time in which the parameters are transmitted. This estimated correction accounts for the deterministic satellite clock error characteristics of bias, drift and aging, as well as for the satellite implementation characteristics of group delay bias and mean differential group delay. Since these coefficients do not include corrections for relativistic effects, the user's equipment must determine the requisite relativistic correction. Accordingly, the offset given below includes a term to perform this function.'' ::: (From [[Talk:Global Positioning System]])::: [[User:RonLar|RonLar]] 12:44, 3 August 2010 (EDT)
== Several Clarification/Corrections ==
221
edits