Difference between revisions of "Talk:Essay:Quantifying Order"

From Conservapedia
Jump to: navigation, search
(Request for permission to include an edit)
(Quantum Mechanics and Free Will: I think more atheists deny QM than people of faith do, and unlike the theory of relativity, QM has produced immensely productive inventions)
Line 231: Line 231:
This is my first potential edit on Conservapedia, and so I am hesitant in making it, and would make it only if I get a go head from [[User:Aschlafly]] or one of the other administrators. I think that similar to relativity, we could include an argument on theological grounds against Quantum Mechanics. The one theological objection I had in mind was in relation to free will, for which Quantum Mechanics can possibly provide no explanation. I believe this gives theology precedence over science, so should I include this point in the article? [[User:CirceCook|CirceCook]] 07:31, 29 June 2010 (EDT)
This is my first potential edit on Conservapedia, and so I am hesitant in making it, and would make it only if I get a go head from [[User:Aschlafly]] or one of the other administrators. I think that similar to relativity, we could include an argument on theological grounds against Quantum Mechanics. The one theological objection I had in mind was in relation to free will, for which Quantum Mechanics can possibly provide no explanation. I believe this gives theology precedence over science, so should I include this point in the article? [[User:CirceCook|CirceCook]] 07:31, 29 June 2010 (EDT)
: Thanks for your suggestion, but please explain your objection to [[QM]] more clearly first.  I think more [[atheists]] deny [[QM]] than people of [[faith]] do, and unlike the [[theory of relativity]], [[QM]] has produced immensely productive inventions.--[[User:Aschlafly|Andy Schlafly]] 08:13, 29 June 2010 (EDT)

Revision as of 12:13, 29 June 2010

"Subsequently, however, more accurate measurements with more sophisticated technology have determined this precession to be 55 arc-seconds per century, nearly 30% off the number provided by relativity."

Please provide a citation in the article for this. I'm shocked that I somehow missed the news. Thanks much. --KSorenson 17:48, 14 November 2009 (EST)

I'm urging you to look beyond what you're taught. I went through the same physics curriculum as others, and it is what isn't taught that matters. Earnestly.--Andy Schlafly 17:53, 14 November 2009 (EST)
Okay. Let's find a way of making that point without quoting an incorrect value for the Mercury anomaly then? Cause putting in a number that's not actually supported by observations just to make a philosophical point seems kind of … I dunno. Deceptive? --KSorenson 17:58, 14 November 2009 (EST)
Kate, if I can call you that, I have no reason to lie about this. I'm not applying for any grants. I'm not trying to get a PhD from liberal professors. I'm not worried about what my colleagues might say. Like the Bible, I'm just telling the truth, and trying to learn more of it.
The physics journals all seem to require payment for access. But type this into a Google search: 5599.7 Mercury. You'll then see what the liberal physics professors won't tell you, as Google returns fragments from limited-access journals. Then, please, pause for a moment and ask yourself: why didn't they tell you this so you could decide for yourself, rather than being told what to think?--Andy Schlafly 18:40, 14 November 2009 (EST)
Oh, okay. I see where you made an honest mistake.
There are two numbers at play here: there's the observed precession of Mercury's orbit, and then there's the anomaly. The anomaly is the amount by which the observed precession differs from the mathematically predicted precession. What you did was quote a figure for the anomaly using the figure for the observed precession. Hang on, lemme splain.
The precession of an orbit is the sum of several effects. Newton's approximation for gravity predicted three different effects: axial precession of 5,025 arc seconds per century, 530 additional arc seconds per century from the gravitational effects of the other planets, and a tiny amount, less than one arc second per century, due to the fact that the sun isn't a perfect sphere. (Those numbers are all rounded off; the precise figures are trivially googlable.)
If you add up the precession predicted by Newton's approximation, you get exactly 5,557.02 arc seconds per century.
But if you run the numbers using the Einstein equations instead of the Newton equations — using the same constants for things like the mass and shape of the sun — you get a precession of exactly 5,600±0.04 arc seconds per century. It's really weird that it would be a round number like that, but that's how the math works out.
The observed precession of Mercury's orbit? It's 5,599.7 arc seconds per century. Which is where you got your number from. And that means the general relativity prediction was accurate to within (deep breath) one half of one one hundredth of one percent.
That's like shooting an arrow from Los Angeles and hitting the bullseye in Melbourne.
Would you be a dear and remove the incorrect anomaly figure from your essay now? I know it's a work in progress and I hate nitpickers, but somebody could stumble across that and be misinformed.--KSorenson 19:11, 14 November 2009 (EST)
Your point is an excellent one. Thank you. The 30% figure was wrong for the reasons you provide.
But the underlying point in this entry remains correct: due to advances in precision in measurement, the prediction of relativity no longer matches the data on the precession. The discrepancy is much greater than the margin of error, which is all that matters from a logical perspective. The entry has been updated accordingly, and I welcome further comments you may have.--Andy Schlafly 19:44, 14 November 2009 (EST)

(Unindent) I'm not sure you're going to welcome these comments, sir. Because you're just flat-out, provably, unequivocally wrong on this one. The observed value of the precession of Mercury hasn't been changed in a hundred years, because it's a direct observation. We measured it with telescopes, and those were just fine at that scale a century ago.

I'm afraid your edit made the offending section paragraph even more misleading than it was. Predicted value of the precession (via Newton) in 1915: 5,557. Observed value in 1915? 5,600. Difference? 43. Predicted value from the Einstein equations? 5,600. Observed value today? Still 5,600. Difference? Ridiculously small. I know you're actively working on this essay, and I feel really bad about beating you up over this, but you wouldn't have the paragraph in there unless you thought it had value.

Just so you know, I've got some feedback on your paragraph on quantum mechanics as well. For starters, the position and momentum of a particle is exactly as uncertain after an observation as it is before, because reducing uncertainty of the position increases uncertainty of the momentum and vice versa. They're intrinsically linked. Maybe that's not your point; measuring a particle does, I suppose, bring about a sort of philosophical order that was previously absent — we know where the particle is now — but at the cost of reducing our knowledge about another aspect of the particle's motion. But your essay isn't fleshed out enough for me to really see yet what you're getting at, so that might be irrelevant to your point. --KSorenson 20:00, 14 November 2009 (EST)

Kate, I don't have an ax to grind about this. General Relativity was developed to explain the Mercury precession, so the theory certainly should fit the data. I expected that it would. But the fit isn't there anymore, due to more precise measurements. It's beyond the margin of error, and logically that's all that matters. You're using rounding above that obscures what the margin of error is. Professor Will does not even include this test in his recent summary of all the evidence for GR, and we can now see why. Those are the facts, and logic applied to the facts. Anyone has free will to accept or deny it. I accept the facts and logic as they require.
You make an interesting point about position, but I don't think the essay is incorrect because it says nothing about momentum. Observation can pin down the position, which is relevant to establishing order. But without observation there is disorder. That is the basic point.--Andy Schlafly 20:11, 14 November 2009 (EST)
Right, but there's an error of fact buried in there. It's a totally innocent one, I'm sure; I'm not accusing you of axe-grinding. It's just that the precession of the perihelion of Mercury has not changed since 1916 when the theory was published. It's not that we measured it with telescopes before 1916 and got a rough estimate, and now we measure it with better telescopes and have a much more precise figure. We measured it before 1916 and got a very accurate figure because measuring the motion of Mercury just isn't that hard, and the measurements we make today with better telescopes say only that yup, the older measurements were pretty much spot on.
What we have done since then is to much more precisely measure the oblateness of the sun. There was a big controversy about that back in the … hmm … 80s I think it was? Goldberg and Dicke claimed that the sun was much "fatter" than previously thought, which would have made the predictions from general relativity different from the observed precession. Maybe that's what you're thinking of? For a while there was a lot of disagreement about what shape the sun actually is, but that's been pretty much put to bed with both more accurate ground-based observations in the 90s and helioseismography.
Anyway, saying that the prediction matched the observation in 1916 and doesn't today is simply flat-out false. If your argument depends on it, then you're hurting your argument with this point. If it doesn't, then what's the harm in fixing it?
Thanks for clarifying your point about quantum mechanics. --KSorenson 20:35, 14 November 2009 (EST)
Kate, as I said, I don't care either way, but I am going to tell the truth. GR fit the observed data in 1916 (indeed, GR was developed to fit it), but now (due to more sophisticated measurements) the GR prediction is wrong by more than the margin of error. None of your comments above address the margin of error, which must be the scientific focus. A difference between theory and observation is not "ridiculously small" if it is more than the margin of error, as in this case.--Andy Schlafly 20:47, 14 November 2009 (EST)
Perhaps this is what Mr. Schlafly is referring to. The article states that 5599.7 arc-seconds is the observed value. KSorenson is quoting a value of 5,600 (±0.04). 5600-.04=5599.96. From just those values then yes the relativity value is higher by .26 arc-seconds even factoring in the error. The only thing I ask is what is the error range for the observed value? ameda 21:08, 14 November 2009 (EST)
Presumably the error range for the observed value is no more than .1. Again, note that Professor Will conspicuously omits this famous claim of evidence for GR from his recent comprehensive summary of the evidence for GR, as cited in this entry.--Andy Schlafly 21:12, 14 November 2009 (EST)

(unindent again because I'm lazy with bullets) We can do a heck of a lot better than "presumably," Andy, and as a person who cares deeply about facts and logic, you darned well know that. I happen to have the Pijpers paper from 94 here; I dug it out when I thought you might have been thinking of helioseismography. In it he cites radar ranging studies from 1976 to 1992. Here's the data, with margins of error. Note that these numbers are for the anomaly, and not the precession total, and remember that the figure from the Einstein equation is 42.98 ± 0.04, okay?

  • 43.11 ± 0.21 (Shapiro 76)
  • 42.92 ± 0.20 (Anderson 87)
  • 42.94 ± 0.20 (Anderson 91)
  • 43.13 ± 0.14 (Anderson 92)

So the Einstein prediction is within the margin of error of those four radar-ranging measurements of the Mercury anomaly. I'm sure there've been more recent studies, but I don't have them literally sitting in front of my face at the moment, so those are the ones I'm citing. Can I see your numbers that say the Einstein prediction is outside the margin? More recent data than what I have in my hand here maybe? (This Pijpers paper is on ARXIV, by the way, if you want to check it out.)--KSorenson 21:17, 14 November 2009 (EST)

Oh, and just incidentally? Will didn't leave Mercury out of his paper; he just talked about it in really jargony physics-paper language.

Three decades of experiments, ranging from the standard light-deflection and perihelion-shift tests to lunar laser ranging, planetary and satellite tracking, and geophysical and astronomical observations, have placed bounds on the PPN parameters consistent with general relativity.

"PPN" is the parameterized post-Newton formalism, a rewriting of the law of universal gravitation to include coefficients derived from general relativity. The Einstein field equations are nightmarish to solve, so PPN was created as a middle-ground approximation between the (good but not good enough in some contexts) Newton approximation and the agonizing pain of having to actually solve the Einstein field equations every time you want to calculate the delta-vee required during a solar slingshot maneuver for a planetary probe. What Will said in that paper is the PPN approximation has been tested against general relativity and supported by 30 years of experiments.

This is really getting into the tall grass, and I know how you hate wasting time. Maybe we can bring this conversation to a conclusion? --KSorenson 21:38, 14 November 2009 (EST)

Kate, I have an open mind about this but, quite honestly, the relativists protest too much. Why do you care so much about defending relativity? Not to pick on you, however, because many trained in math and physics likewise defend relativity like they are defending their own reputation. It's bizarre. Regardless of the reason, protesting too much is not scientific.
Answering the substance of your post, your most recent data is from 1992 (17 years ago, with the data probably older than that), and its margin of error confirms what I said: it's approaching 0.1. Combine that 0.1 (or 0.14 if you like) with the most recent data and it's clear that GR no longer fits the data. Of course, no one is going to dare publish a paper claiming GR is disproved by the data, and even if they tried, no journal would accept it. So the trail goes cold at this point, just as the data diverge from the GR predictions and the margin of error declines to where it can't save GR.--Andy Schlafly 22:37, 14 November 2009 (EST)
"Why do you care so much about defending relativity?" 'Cause teaching physics is something I do for a living. 'Cause I think it's really neat. 'Cause seeing somebody totally misunderstand it, and then go on to draw incorrect conclusions based on his misunderstanding of it, and finally to pass those incorrect conclusions on to impressionable kids who trust him … well, that just breaks my heart. You can call it protesting too much if you want, Andy. But I wish you could understand that it's really just me trying to help.
I wouldn't have fought you on this at all if you'd said something like "A dozen eggs contains fifteen eggs, plus or minus two." That's just obviously wrong, and nobody who reads it would fall for it. But you're hiding your false conclusion behind a wall of data that you know most people won't bother looking up for themselves, and that's just dishonest. That's unworthy of anybody who'd call himself a teacher, and what's more I think you know that in your heart. You seem like a conscientious guy; what does your conscience say to you about this?
Anyway, it's your essay, you can obviously write what you want. But let me just give you a heads up: Next week, when I put your theory of relativity page on the table for major surgery? I don't think you're gonna like it. --KSorenson 23:24, 14 November 2009 (EST)
Kate, you didn't address the substance of my comment about the evidence, but don't worry about it. The bottom line is clear: no physics major, no physics grad student, and no physics teacher should dare criticize relativity, no matter what the data say. The political grip on this issue is intense. In fact, to be honest, I would advise against your criticizing it in any way. It could harm your (or any other teacher's or physicist's) career. There are examples of people who were denied tenure simply because they criticized evolution, and the politics here is just as strong.
I look forward to learning from your entry on the theory of relativity. The math is fascinating regardless of its manifestation in reality.--Andy Schlafly 23:33, 14 November 2009 (EST)

(unindent) "Kate, you didn't address the substance of my comment about the evidence, but don't worry about it." What was there to address? You made an arithmetic error. Do you want me to send you the Mathematica scatterplot I made just to triple-check that I was interpreting the data correctly? It's pretty. The error bars are blue.

Andy, I wish I could get you to come to my department for a week. Just one week, any week. Our students, grad students, associates, profs, chair, heck, even the janitor criticizes relativity every day. I could get you a meeting with one of our theoretical cosmologist; he's been pulling his hair out for years trying to make some progress on the vacuum energy problem. For a while there he was coming into my office a couple times a week and saying … well, unprintable things about partial differential equations. Even we theoretical physicists think general relativity is a mathematical mess.

But we respect it anyway. Because it works, at least as far as anybody's been able to measure.

Can I ask you a question? What's your beef with relativity? I mean, I know you question the data, but … why? Are you just being iconoclastic? I don't mean that in a dismissive way; I totally understand and respect the impulse to say "Everybody agrees that this is true, so I'm going to question it!" I'd really just like to understand your point of view on this, whatever it may be. --KSorenson 23:44, 14 November 2009 (EST)

GR's predictions are off by more than the margin of error, as we discussed in detail above; it and special relativity have absurd discontinuities; there are logical flaws, as in relativistic mass; it conflicts with QM; and it predicts gravitons that have never been found despite wasting hundreds of millions of taxpayer dollars on it. Relativity pulls people away from reading the Bible and relativity is pushed big-time by liberals. It chills progress by intimidating people against criticizing it. Other than that, the theory is pretty good!--Andy Schlafly 00:05, 15 November 2009 (EST)
Wow, Mr. Schlafly must really like this conversation, he actually made a joke. ;) jk ameda 00:15, 15 November 2009 (EST)
Thanks very much for taking the time to reply; I understand better now. Of course, some of that is unmitigated garbage, and we'll have plenty of chances to deal with it when I fix your theory of relativity article next week, so I'll skip some points for now.
  • You discussed the fact that the predictions are outside the margin of error; I pointed out to you repeatedly that you were mistaken. I even offered to show you a plot. So come on.
  • To be frank, relativity doesn't conflict with quantum mechanics; the two theories don't overlap in any domains we can presently observe. But that's the problem. They don't overlap, so we don't know how we're going to understand systems where both gravity and quantum mechanics have non-negligible effects. It's entirely possible that every such region of spacetime is sequestered behind an event horizon; that's jokingly called the "convenient cosmic censorship hypothesis" by one of my colleagues.
  • General relativity doesn't predict gravitons at all. General relativity doesn't say anything about particles; the Standard Model predicts the existence of particles (like the Higgs). Gravitons are part of the various attempts to reformulate general relativity as a vector gauge theory, none of which have gotten there yet. And, uh, since none of the gauge theories have gotten there yet, Andy, not one dollar has been spent looking for gravitons. Because we don't know where to look. But we do know that if they could be detected by existing particle accelerators, they would've been. So if and when physicists decide to look for them, it's going to have to start with building an accelerator the size of our galaxy[1], and you'll have your chance to lobby the appropriations committee then.
  • Yes, studying relativity does take people away from time they could spend in religious activities. So does reading this site. Just give me a chance to copy-and-paste my contributions out before you shut it down to remove the temptation.
Anyway, like I said, we'll have plenty of time to have these arguments when I start work on theory of relativity. All I ask is that you engage in constructive collaboration with me and whomever else chooses to help out, rather than pouncing on the "undo" button like you did when I rewrote black hole. We've both demonstrated that we're reasonable adults, I think; we can work together. Deal? --KSorenson 00:22, 15 November 2009 (EST)
  1. WARNING: exaggeration for humorous effect, do not take literally.
I've been quietly following this conversation today, but Kate beat me to the "Submit" button! Well, I'll just point out that scientists can and frequently do "intimidat[e] people against criticizing" pretty much any theory, because they think it's right and they don't want to waste time. It's quite likely close-mindedness, but it exists, and you can't take that as disproof of the theory. I don't think someone who rejected Mendel or Maxwell would get pretty far today, either. (Yes, I know Mendel has been amended with epigenetic inheritance, but I think you get my picture). It's just a bothersome red herring.
I don't know anything about the Mercury data, but the most recent data I've seen here says general relativity might work; it's at the border of the range of error, and it's too precise for any of us to extrapolate. General relativity could be spot on. Or, a new theory being needed - if you're trying to construct a theory of everything, a new theory definitely is needed to deal with quantum mechanics! But, general relativity does predict a lot of things better than Newton. Newton didn't explain everything, nor does general relativity - but I think you can find better stuff to attack it with than an extrapolation of Mercury orbital data. --EvanW 00:37, 15 November 2009 (EST)
Ugh, I really should be sleeping, but this is just such an engaging conversation I can't seem to break away.
If you make a measurement to test a theory and the measurement doesn't match the prediction, there are three possibilities. Either the measurement is wrong ("That's not Mercury, that's Saturn!") or the theory is wrong ("Turns out gravity isn't really caused by leprechauns!") or both are fundamentally right but you failed to take something into account ("We really shouldn't have assumed the sun is a sphere.")
The thing about the Mercury anomaly is that the observed and predicted numbers are insanely close together. So close as to be declared equal within the margin of error. So either general relativity is absolutely right and we accounted for everything — no physicist believes this, by the way — or general relativity is at least incredibly close to being right, so close that the factors we failed to account for are negligible at the scale of the Mercury anomaly.
But the thing is, Mercury is really thin sauce, as gravity goes. The fields are weak, and the prediction we're testing doesn't say anything terribly interesting about the theory. If you want to get a real feel for how general relativity holds up as a physical theory, and not just a mathematical one, you really need to look at the Gravity Probe B data. (Conflict of interest alert: I worked on that project.) That experiment didn't measure gravitation indirectly by observing the motion of a particle; it measured it directly by parallel transporting a vector in a closed loop around a region of curvature. We empirically measured the curvature of spacetime around a gravitating object (the Earth) and found it to be non-zero. Spacetime is not flat, massive bodies do curve spacetime, and the fundamental idea of general relativity reflects nature.
General relativity doesn't just say that a falling body moves like such-n-such. It tells us why. And to see it dismissed out of hand because Andy doesn't care for the size of the error bars on the results of a radar study? That, I confess, rubs me the wrong way. --KSorenson 00:51, 15 November 2009 (EST)
Great point about experimental error. Before I really do sign off for the night, Kate, I'd like to give you an article suggestion: Gravity_Probe_B. I'm enthusiastically looking forward to hearing how it was done! --EvanW 01:00, 15 November 2009 (EST)
Oh, I'm not the girl to write that one. It'd be 200 pages long and full of equations and whole paragraphs of me going "You guys this is so awesome!" --KSorenson 01:09, 15 November 2009 (EST)
On the contrary. You are exactly the right girl to write this. But not yet. Do GR first, OK? And you'll have to take off your instructor hat, and put on your explainer-for-lay-people hat, so that it won't be 200 pages long. Whenever you reach the point where you think "You guys this is so awesome", don't go into "and so I have to write the awesome equations". Go into "how can I convey the awesomeness to my reader?". PatrickD 11:32, 15 November 2009 (EST)
I don't want to perpetuate this debate, but I don't want a lack of response to be misinterpreted. Relativity has quasi-religious status for many; they'll defend regardless of what the evidence is, regardless of its absurd inconsistencies, and regardless of its far-fetched assumptions and non-falsifiability. I don't mind relativity, and look forward to reviewing the updated entry. But open-mindedness is not a trait of many relativists, who will demonize anyone who points out its fairly obvious flaws.
One way to evaluate religions, or quasi-religions, is to look at the fruit it bears. What has it helped achieved? In the case of relativity, it has produced nothing. Nil. Zippo. After nearly 100 years and a ton of money. If you find the math in relativity fun, great, but relativity is not going to help anyone. It never has. Pick up a Bible in between some equations.--Andy Schlafly 18:31, 15 November 2009 (EST)
"Relativity has quasi-religious status for many…regardless of its far-fetched assumptions and non-falsifiability." As has already been shown repeatedly by those knowledgeable and qualified in the subject such as KSorenson the theory of general relativity is eminently falsifiable. For instance the two gravity probes (GP-A and GP-B) were launched specifically to measure rate change of a clock in lower gravity and space-time curvature near the Earth respectively, both experiments specifically testing the theory of relativity. As both experiments were to test the theory of relativity this means that the theory of relativity meets the requirements to be considered falsifiable. This is as patently obvious as stating that 2+2=4. If the theory of relativity is not falsifiable then no experiment can exist to test it. The existence of Gravity Probes A & B automatically that the previous statement cannot be true. So, the undeniable existence of Gravity Probes A & B now proving the falsifiability of the theory of general relativity this means that by Karl Popper's rigorous standard the theory of relativity meets the requirements to be a science. This is immediately obvious to anyone who has made an in depth study of Popper's work, the kind of study that all students of the pure sciences undergo, although strangely enough those students of those subjects which use an applied form of science never seem to be taught such things to the levels required. Presumably this is because the standard of science they are taught is considerably less rigorous or in-depth than the standards expected of and required of students of the pure sciences.
As the theory of relativity meets the requirements to be considered a science then this in turn means the first part of your statement: "Relativity has a quasi-religious status" is itself false. Science is not religion. Religion requires hope, hope that what one believes is true. Science requires absolute cynicism, it requires one to say "this is my idea, help me prove it wrong". To this date tests on the theory of general relativity has failed to show that it is wrong, and where measurements have been made to confirm or deny the accuracy of the general theory of relativity such results have shown that the predictions made by the theory of relativity are accurate to the observed effects well within the scientifically determined margins of error.
The statement that "relativity is not going to help anyone" is, of course, as wrong as you can get. The theory of relativity opened up a massive area of study, and there are no known limits to what may be achieved through such studies. It is not hyperbole to state that the creation of the theory of relativity is as important, if not more important, than the discovery of the safe generation and transference of electricity. This is known and accepted by everybody who has an in depth knowledge of the subject, knowledge gained through years of learning and self-teaching that begins after one leaves university, after one has gained the bedrock of knowledge required to begin teaching oneself the true depths of a subject.
I beg of you this one thing. Open up your Bible and truly study the price one pays for Arrogance and Pride. Learn the lesson that the true Student and Teacher must come to the subjects they study in a state of Humility. Of all the posts on the subject of general relativity each and every person that has made an in depth study of the subject have stated that the views you hold on general relativity are wrong. The only person who states that your views are correct are yourself. Look inside yourself and ask if your stubborn resistance to accept what others learned in the subject have to say on this matter is arrogance, pride or humility.(by DanHutchin)
Dan, I accept your challenge. I'll work on translating the Bible tonight and tomorrow with "a state of Humility." Thank you for suggesting it. In the meantime, could you specify how the theory of relativity has helped anyone? Electricity powers hospitals that save lives, and increase productivity and wealth which help the poor throughout the world. You say relativity "is as important, if not more important." Specific examples, please?--Andy Schlafly 21:52, 15 November 2009 (EST)
Sorry for butting in here but I love science, I am a science major currently. In my mind God gave us the scientific method and the tools to explore his creation for his glory. We can debate the merits of relativity all day but the fact remains that if it is true it is part of God's creation and because of that, automatically gives it value. Plus, pure science in a lot of cases leads to applied science. I don't like arguments based on what we don't know. ameda 22:00, 15 November 2009 (EST)
Ameda, that's fine, but surely you'd agree that unproductive theories or beliefs should not squeeze out productive ones. Someone can use rhetoric to defend any belief or activity, from watching television to drinking beer. One can spend hours explaining to an addict why he should, for example, stop smoking. All the explaining in the world is not as powerful as this: nothing good comes of it. Relativity has had nearly 100 years to help somebody, anybody. How many more centuries should we give it priority over alternative, productive work?--Andy Schlafly 22:14, 15 November 2009 (EST)
GPS, fiber optics, solar panels and PET scans don't count?
I'm amusingly reminded of what Benjamin Franklin said when asked what good was the then-freshly-invented hot-air balloon. "What good is a newborn baby?" That was 1783; powered flight didn't happen until 1903. If you don't see enough benefits from relativity yet, I'd say you need to embrace patience. --KSorenson 22:20, 15 November 2009 (EST)
And by "squeeze out" I assume you mean in funding? I guess we'll just have to agree to disagree on this one, I think it is worth it because it is an integral part of God's creation. Plus, I don't think that just because relativity is given grant money that necessarily means that it is taking it from money that would have gone to say genetically engineering bigger crops. There isn't a one-one correspondence.
I agree with a lot on here but honestly Andy, with all respect, I think DanHutchin is right. We all suffer from pride and from all I have read on here, from your brother Roger to Kate above, you are suffering from it big time on this issue. Think, is it really a coincidence that the first part of the Conservative Bible Project I translated was talking about humbling oneself and I did it just this very night? Sorry for the long response but know that it comes from the heart. ameda 22:29, 15 November 2009 (EST)
Amen, Ameda. I appreciate your advice for me to read the Bible more, and with a humbler heart. I'd also like your advice about this. If empirically the promotion of relativity leads people away from the Bible, would you still support the promotion of relativity? A direct answer from your heart, please.--Andy Schlafly 22:43, 15 November 2009 (EST)
From the heart, and hopefully my understanding of the Word, anything can lead people away from the Lord, even if "based" on the Word of God. What I mean by that is people can use and abuse anything, even the Bible to support xyz. You know how many times I see Peter Popoff ripping off my brothers and sisters in Christ for some "Miracle spring water"?
If relativity is part of the fabric of the universe, and I do think that, then it was created by God just as much as the Bible, the stars, etc. and as I said can be used and abused. The only way science can lead one away from the Lord is if there isn't the secondary component to it, the spiritual one, the one stating that this was created by a being that created you and loves you. That is the only thing that needs to be addressed not relativity itself. Basically it seems like you are arguing that God's creation can lead people away from him? I don't think that is scriptural nor correct. ameda 23:04, 15 November 2009 (EST)
No, that's not what I'm saying, and I humbly requested a direct answer. People who are taught and then believe relativity are less likely to read the Bible again, or as frequently. If true (as we've seen on this site and in colleges), do you still support the promotion of relativity?--Andy Schlafly 23:18, 15 November 2009 (EST)
I don't think that is what you're saying, but Ameda has a point: if relativity is true, then God made it, so we can't dismiss it. If it isn't true, and if it does lead people away from the Bible, then we shouldn't be talking about it - but we first need to decide whether relativity is true.
And could I please see those statistics? I believe relativity, and I read the Bible. I think you're mistaking a correlation for causation: we already know colleges try to move students away from the Bible, and they're where most people happen to learn relativity. So, even though relativity has nothing to do with it, it's quite possible that people who study relativity are less likely to read the Bible because they've happened to spend years at liberal schools. (Incidentally, that's a good reason to teach relativity here at Conservapedia!) --EvanW 23:24, 15 November 2009 (EST)
Andy, you are trying to trap me into some black/white answer here. I believe that relativity is true and therefore when taught in all aspects will not lead people away from God. You might as well ask me the same thing concerning the Sun. Can it lead people away, sure, when it is couched in naturalistic philosophy. You are making some wild hypothetical based on nothing but your own encounters with vandals on this site, that is not empirical. I can easily make the same hypothetical concerning Conservapedia itself. I view this site as preaching the word of God but that doesn't mean that just because someone thinks less of Christianity after reading it then that means it is a problem with the site, it could be with the person not wanting to hear the truth.
PS- People misunderstood me, I wasn't saying Andy was arguing that, it simply reads like it as a consequence of what he is saying considering that relativity is correct and was designed by God. My opinion of course.ameda 23:29, 15 November 2009 (EST)

(unindent) Don't let me jump into the middle of y'all's philosophical debate or anything, but there's a point on the table that needs resolving. Andy, your essay (yes, I know, still a work in progress) contains falsehoods. Are you at all interested in correcting them? --KSorenson 23:31, 15 November 2009 (EST)

Indeed. The essay contained the claim that the theory of general relativity is non-falsifiable. This is patently wrong. There are well documented experiments that seek, through observation of physical phenomena, to disprove predictions made by the application of the theory of the general relativity. Whether the results of these observations match the predictions made (within scientifically determined margins of error) is completely immaterial. The fact that the experiments contain the potential to show that the theory of relativity is false shows that the theory of relativity meets the most basic test required to be considered falsifiable. It is impossible to deny such a basic and obvious fact and retain any kind of credibility.

"In the meantime, could you specify how the theory of relativity has helped anyone?" As has been stated above, PET scans. Please show how PET scans have never helped anybody. And all those inventions mentioned above are just the tip of the 'berg of how the theory of relativity has helped people.

"Relativity pulls people away from reading the Bible" Please show the empirical evidence you have gathered for this. Please also provide the empirical evidence that shows that the people not reading the Bible a) have done so because of relativity and b) were reading the Bible before they became involved with relativity.

"I'll work on translating the Bible tonight and tomorrow with "a state of Humility."" So you refuse to reconsider your belief that relativity is wrong, and refuse to remove the falsehoods contained within the essay. Instead you seek to rewrite sacred texts so that they say only what you want to say. Much in the same way you seek to rewrite what falsifiability means so that it says only what you want it to say. Much as you seek to rewrite the good that the theory of relativity has led to so that it now says only what you want it to say. Much as you seek to rewrite the experiments that test the theory of reliability and also seek to rewrite the results of those experiments so that they say only what you want them to say. I'm sorry. I truly am, for while I can see a pattern there, I cannot see any true humility in any of these actions.--DanHutchin 11:23, 16 November 2009 (EST)

Dan, I find your rants to be nonsensical. The theory of relativity no more helped develop PET scans than it helped land a man on the moon.--Andy Schlafly 12:38, 21 November 2009 (EST)

Information theory?

In this essay am missing (among some other things which where partly already discussed in the talk page) the connection between physical reality and information theory. Maybe introducing the definition of entropy itself (and not a selected spotlight on the thermodynamic relations) would help to generate some more context.

Please improve as you think best. Information theory does deal with physical reality, as in communication errors.--Andy Schlafly 01:06, 21 November 2009 (EST)
Ok I'll try, but it may take time, because i'll have to review some literature - I may hold a phd in physics and deal with effects of disorder in my experiments on a daily basis, but the (theoretical) developments in the last 100 years in that respect were a little steep. I feel that when discussing the topic Hawking deserves to mentioned, as well as the dissipation-fluctuation theorem, the Boltzmann radiation, entanglement, ergodicity, and maybe more (or a well selected set of topics to make it more clear). I'll try to write first a small independent text on how I see the subject (An kind of "reply" essay), which we can compare. I'll announce in this talk page, ok? (And i will not refer to relativity at all, because i find the discussions here about that topic highly uninspiring and counterproductive. Everything what needs to be said has been said already a hundred times.). If we feel that the content can be merged without messing things up, we can do so. --Stitch75 03:10, 21 November 2009 (EST)
To be candid, Stitch, if one's mind is completely made up and closed with respect to relativity, then I'm not optimistic about how insightful one can be on other topics. The essence of advancing knowledge is an open mind that is constantly challenging existing theories. That's what we do here, and I hope you can accept that approach.--Andy Schlafly 12:33, 21 November 2009 (EST)

As all most physicist in the world, i am expecting what the next LIGO upgrade will bring. If it does not show gravity wave events then the colleagues in the relativity community may have to explain sth to us, since the general claim would be that it should be possible to observe these events then. However I am not an expert on relativity, so this is not my bussiness. And i find it sad that you suppose that somebody doing actual experiments and evaluating the data himself can tell less about modern physics than somebody who has comparatively little personal experience in experimental physics, and negligible one in theoretical physics. I am used to judge people based on what their statements and not on their non-statements. --Stitch75 07:49, 22 November 2009 (EST)
What's "sad" is how relativity misleads so many people and wastes taxpayers' money on experiments that never prove anything. LIGO is yet another million-dollar boondoggle. People who believe in relativity should spend their own money on their activities, not ours, just as religions do.
Not only does the theory of relativity fail to help anyone, but it affirmatively hurts lots of people by misleading them into a hurtful frame of mind.--Andy Schlafly 16:12, 22 November 2009 (EST)

Science and the Bible

The talk page has been filled with quite a lively discussion. While the scientific arguments are interesting, they have been based on the assumption of this article: modern physics will help us understand the Bible. But, does someone really read the two feeding stories in Mark, and conclude that, ergo, order has won out over disorder? I highly doubt it. When Peter attempts to walk on the water in Matthew, is the reader really wondering if gravity or the "disordering" action of wind and wave caused him to fail? I would say - not likely. (A better question might be: Why does Mark not have Peter attempt to walk on the water?) As for John 1:1, the discussion concerning the logos has been equally lively, but the translation of logos as "perfect order" doesn't seem to be the best, especially if it is used to drag modern physics into it. The term logos, by the time of John, had had a long philosophical history, and it is to that history and to Greek philosophy that we should turn in order to understand it, and to put it into its proper context. - Danielitld

Daniel, I have an open mind about this, and discussions are enlightening. I don't see any reason to place limits or boundaries on the Bible, and the remarkable insights that can be gleaned from it. Newton used daily, and that can hardly be criticized in light of his prodigious scientific output. Shouldn't modern scientific inquiry imitate Newton's productive approach? I think it should.
Mark was a young boy who wrote about what he witnessed. Young boys are not out on dangerous boats in the middle of the night, so Mark didn't see the walking on water. As to translating "logos", John was trying to communicate the truth there and the Greek was inadequate. I don't think a scientific connotation should be automatically ruled out. Science is, after all, part of truth. But I welcome your views.--Andy Schlafly 09:50, 23 November 2009 (EST)

The greatness of Isaac Newton is not to be denied. However, that doesn't mean that his ideas can never be superseded, or that we can't disagree with him. According to an essay on Newton by Stephen Snobelen - found via the site isaac-newton.org - Newton believed that the ancient Greeks knew about the inverse-square law of gravitation, but "cloaked [that knowledge] behind the figure of Apollo and his seven-string lyre". Personally, I don't think that is the case. Religiously, Newton seemed to have believed in Arianism, that Jesus wasn't God - a view you probably disagree with. To say that the Bible is not a science book is not "placing limits" on the Bible. Its acknowledging that the Bible is a product of the time(s) when it was written. And its also stating that, characterizing the Bible as a science book mischaracterizes it, and leads to misunderstandings. Reading Mark's stories of the feedings of the multitudes as "order vs disorder" is a woeful misconception of what Mark was trying to say. The one link that JacobB wanted me to check out actually said that Matthew 24:30 somehow is a reference to television!! - which is simply outlandish! Would reading that verse with "television" in mind really improve someone's understanding of it? I'm highly skeptical of that notion, to say the least. Just as I'm skeptical of finding dinosaurs in the Bible, for reasons I've mentioned elsewhere. Realizing that the ancient Hebrews or Greeks didn't know modern science is not to say that they were idiots. The people who wrote the Bible were hardly that. Isn't it enough that they bequeathed to us the idea of monotheism with an ancient logic which, by itself and without the need to inject dinosaurs into it, is still compelling? - Danielitld

Daniel, we addressed this on the Genesis talk page, and you seem to be bringing up the same nonsense as there. "Its acknowledging that the Bible is a product of the time(s) when it was written." The Bible is not a cultural product. It is the inspired word of God. The Logic of the bible is not ancient. It is divine. Methinks you've listened to too many liberal apologists. DouglasA 13:21, 23 November 2009 (EST)
The Bible is logic, as Douglas says. Logic yields insights. It did for Newton, for everyone's benefit. Of course Newton wasn't correct about everything he did. But he got enough things right, and the Bible helped. It can help us too ... in all areas of life, including science.--Andy Schlafly 13:38, 23 November 2009 (EST)

So, Douglas, am I to take it that you believe that televisions are referred to in Matthew's gospel? And you say that my comments are "nonsense"! But if the Bible is not a cultural product, then how is it that you are supposedly finding the products of the 20th and 21st centuries in it? You want to deny that ancient cultures had any influence in the Bible's writing, yet apparently only our modern day culture can fully understand it. If the Bible is the timeless word of God, then the ancient Hebrew should have been as fully able of comprehending it as an early 21st Century American. It shouldn't require the happenstance of the invention of television to understand what the Bible says.

You might want to talk with Michael Back about this, as well. "As for the logos, John was using a concept the Greeks had . . to help the Greeks better understand who and what Jesus was," he wrote. This definitely sounds like its a "cultural product", especially since Mr Back "highly doubts" that the term logos - and the Greek ideas related to it - is "EXACTLY who Jesus is". (Emphasis in the original.) When asked by the scribe which is the greatest commandment, Jesus responded that the Shema Yisrael is. But then he added: "The second is this: Love your neighbor as yourself." (Mark 12:29-31) These two great commandments are Jewish, from Deuteronomy and Leviticus. Rabbi Hillel, who lived at same time as Jesus, told the man hopping about on one leg that the Torah can be reduced to this: What is hateful to you, don't do to another. So we can see that Jesus' words were part and parcel of the cultural milieu of his time. They, and the gospel they are in, were cultural products. And now these ancient cultural products are part and parcel of our culture. They don't require televisions, dinosaurs or the Second Law of Thermodynamics for further explication. Like the Socratic "Know thyself", they stand on their own, as relevant today as they were 2,000 years ago or more. - Danielitld

Daniel, as a favor, please in the future try to be concise rather than resorting to rants. I'm not sure why you keep bringing up televisions, but the matter is extremely simple. The Bible is God's word. It is not, as you claim, a "cultural product." The objections many of those around Jesus were cultural, but his responses transcended culture, and included messages which were entirely new in human history. What I find most disturbing is that you seem to entirely ignore, or even deny the divine origin of the Bible. How can you possibly claim that it is God's inspired word when you deride it as a "cultural product" and that God was influenced by ancient cultures? Thanks to what we have learned of God's creation in the intervening millenia, we are more than ever able to discover the incredible depth, both logical and, yes, scientific, of God's word. Why are you so set on denying the mere possibility that the Bible mentioned dinosaurs? I've never claimed that it's true, nor would I seek to prove it, but I'm willing to allow for the possibility, and am amazed by the foresight entailed. DouglasA 16:46, 23 November 2009 (EST)

First "nonsense", and now "rants". At least Mr Back and I are able to keep this on what he termed a "professional level" in spite of our disagreements. But then I suppose that Mr Back would also be considered a "nonsensical ranter" by you for his comments. If you recall, DouglasA, I once stated that I have no problem with seeing the Bible as the inspired word of God. I just have problems with those like you who make claims about what it says. Maybe you were too incensed to notice, but I did mention that JacobB's link from the baraminology discussion made the claim about televisions and Matthew 24:15. If you feel that my considering that claim to be very dubious somehow denies God's word, then I would say that your conclusion is nonsensical. As for dinosaurs - once again - in my discussion about the tannin in Genesis, I stated that you or anyone else was free to interpret that very loose term as including dinosaurs. However, I don't see the need to do so. Does my interpretation of this one word therefore imply that I deny the inspired word of God? Hardly. I just find your claim and your interpretation extremely doubtful. Frankly, DouglasA, it seems that you are confusing your claims with the word of God. They are obviously not the same. And if you have a disagreement with any of my comments, I would prefer that you use the "professional level" of discourse - where you cite chapter and verse in support of your ideas - since "loving your neighbor as yourself" doesn't seem to be your forte. - Danielitld

Danielitld, if you can't discuss the issues politely, please don't discuss them at all. Only warning. JacobB 17:22, 23 November 2009 (EST)
Danielitld, Jacob's point is well-taken. A quick review of your edits reveals a pattern of nearly all talk and almost no substantive contributions. First you consumed much of MBack's time (he disagreed with you), now you're doing the same here in consuming the time of other valuable editors.
Do you know what a provocateur is? We have a 90/10 rule and it is enforced to prevent all talk from impeding improvements. Please improve entries here, or move on.--Andy Schlafly 17:37, 23 November 2009 (EST)

Quantum Mechanics and Free Will

This is my first potential edit on Conservapedia, and so I am hesitant in making it, and would make it only if I get a go head from User:Aschlafly or one of the other administrators. I think that similar to relativity, we could include an argument on theological grounds against Quantum Mechanics. The one theological objection I had in mind was in relation to free will, for which Quantum Mechanics can possibly provide no explanation. I believe this gives theology precedence over science, so should I include this point in the article? CirceCook 07:31, 29 June 2010 (EDT)

Thanks for your suggestion, but please explain your objection to QM more clearly first. I think more atheists deny QM than people of faith do, and unlike the theory of relativity, QM has produced immensely productive inventions.--Andy Schlafly 08:13, 29 June 2010 (EDT)