Difference between revisions of "Schröder-Bernstein theorem"
From Conservapedia
(New page: The '''Schröder-Bernstein theorem''' states: <blockquote> Let '''A''', '''B''' be sets, if |'''A'''| ≤ |'''B'''| and |'''B'''| ≤ |'''A'''|, then |'''A'''| = |'''B'''|. </blockquot...) |
(Robot: Capitalize "Set theory" category) |
||
Line 3: | Line 3: | ||
Let '''A''', '''B''' be [[set]]s, if |'''A'''| ≤ |'''B'''| and |'''B'''| ≤ |'''A'''|, then |'''A'''| = |'''B'''|. | Let '''A''', '''B''' be [[set]]s, if |'''A'''| ≤ |'''B'''| and |'''B'''| ≤ |'''A'''|, then |'''A'''| = |'''B'''|. | ||
</blockquote> | </blockquote> | ||
− | [[ | + | |
+ | [[Category:Set Theory]] |
Latest revision as of 04:02, 22 August 2010
The Schröder-Bernstein theorem states:
Let A, B be sets, if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.