# Difference between revisions of "Schröder-Bernstein theorem"

From Conservapedia

(New page: The '''Schröder-Bernstein theorem''' states: <blockquote> Let '''A''', '''B''' be sets, if |'''A'''| ≤ |'''B'''| and |'''B'''| ≤ |'''A'''|, then |'''A'''| = |'''B'''|. </blockquot...) |
(Robot: Capitalize "Set theory" category) |
||

Line 3: | Line 3: | ||

Let '''A''', '''B''' be [[set]]s, if |'''A'''| ≤ |'''B'''| and |'''B'''| ≤ |'''A'''|, then |'''A'''| = |'''B'''|. | Let '''A''', '''B''' be [[set]]s, if |'''A'''| ≤ |'''B'''| and |'''B'''| ≤ |'''A'''|, then |'''A'''| = |'''B'''|. | ||

</blockquote> | </blockquote> | ||

− | [[ | + | |

+ | [[Category:Set Theory]] |

## Latest revision as of 04:02, 22 August 2010

The **Schröder-Bernstein theorem** states:

Let

A,Bbe sets, if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.